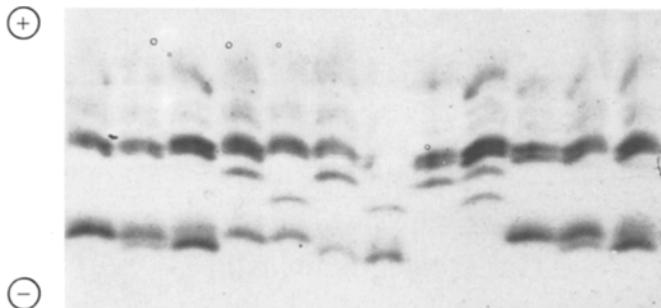


PGM₁ Subtypes Determined by Agarose Gel Isoelectrofocusing

S. Weidinger and F. Schwarzfischer

Institut für Anthropologie und Humangenetik der Universität München,
Richard-Wagner-Straße 10/I, D-8000 München 2, Federal Republic of Germany


Summary. PGM₁ subtypes were determined in red cell hemolysates by isoelectric focusing on agarose gel plates. By this modified procedure PGM₁ subtypes may be readily classified. Nine of the 10 expected phenotypes were found in a sample of 470 unrelated individuals from Southern Germany. The frequencies for the four alleles were found to be: PGM₁¹⁺ = 0.6212, PGM₁¹⁻ = 0.1224, PGM₁²⁺ = 0.2043, PGM₁²⁻ = 0.0521.

Key words: Blood groups, PGM₁-polymorphism – Phosphoglucomutase I, subtypes

Zusammenfassung. Der PGM₁-Polymorphismus wurde mit Hilfe der Isoelektrofokussierung auf Agarose-Gel-Platten untersucht. Mit dieser modifizierten Methode lassen sich die PGM₁-Untergruppen an Hämolsaten ohne Schwierigkeiten klassifizieren. Neun der erwarteten zehn Phänotypen wurden in einer Stichprobe von 470 nichtverwandten Personen aus Süddeutschland beobachtet. Folgende Allelhäufigkeiten wurden ermittelt: PGM₁¹⁺ = 0,6212, PGM₁¹⁻ = 0,1224, PGM₁²⁺ = 0,2043, PGM₁²⁻ = 0,0521.

Schlüsselwörter: Blutgruppen, PGM₁-Polymorphismus – Phosphoglucomutase I, Untergruppen

In 1964, Spencer et al. described first genetic variation of Phosphoglucomutase I (PGM₁). The three phenotypes PGM₁ 1, PGM₁ 2-1, and PGM₁ 2 are determined by two autosomal alleles, PGM₁¹ and PGM₁² (Spencer et al. 1964). The PGM₁ locus is located on the short arm of chromosome 1 (Billardon et al. 1973; Douglas et al. 1973). With the use of polyacrylamide gel isoelectrofocusing (PAGIF) Bark et al. (1976), Sutton and Burgess (1978), Kühnl et al. (1977, 1978), and Welch et al. (1978) were able to distinguish 10 different PGM₁-subtypes. Acid starch gel electrophoresis led Bissbort et al. (1978) to a similar result. Genetically, these 10 phenotypes are apparently determined by four alleles at the PGM₁ locus (Kühnl et al. 1977).

Fig. 1. Separation of PGM₁ isozymes after 175 min PAGIF (pH 4—6.5). From left to right are the observed common PGM₁ subtypes: 1+1+, 1+1-, 1-1-, 1+2+, 1+2-, 1-2+, 1-2-, 2+2+, 2+2-, 1+1+, 1+1-, and 1-1-

In this study, the PGM₁ polymorphism was analyzed in red cell hemolysates by a modified agarose gel isoelectrofocusing (AGIF) procedure.

Materials and Methods

Hemolysates of 470 unrelated healthy individuals from Southern Germany were examined. Erythrocytes were washed twice in physiological saline solution and subsequently hemolyzed by ultra-sonification (Sonifier). Agarose gel plates were prepared in the size 125 × 260 × 1 mm. Agarose concentration was 0.8%, D-Sorbit was added to a final concentration of 10% (w/v). For the pH gradient, a mixture of Agarose-Ampholine pH 3.5—9.5 and Ampholine pH 5—7 was prepared; the final concentrations were 1.8% and 2.2%, respectively. Samples were applied with pieces of filter paper (5 × 7 mm) which were placed on the gel surface near the anode. A Multiphor chamber (LKB) was used. Electrofocusing was carried out with maximally 1100 V and 40 mA, stabilized at 16 W, for 90 min. The temperature was kept at +6°C by a circulating cooling system. 0.5 M acetic acid was used at the anode and 0.5 M NaOH at the cathode. Enzyme activity was demonstrated with an agarose gel overlay technique (Spencer et al. 1964). PAGIF was carried out with a gradient of pH 4—6.5 at a gel concentration of 5% and cross linking of C = 3%. Ampholine concentration was 2.2%. Plates had the sizes of 245 × 110 × 1 mm. Cooling temperature was kept at +10°C. At the anode glutamic acid in 0.5 M H₃PO₄ was used, at the cathode 0.1 M β -Alanin. Isoelectrofocusing was carried out in the Multiphor chamber at maximally 1200 V, 35 mA, and 25 W for 175 min.

Results and Discussion

Figure 1 demonstrates the PGM₁ phenotypes as observed by analysis of hemolysates by PAGIF; nine of the 10 expected phenotypes are shown. In Fig. 2, the PGM₁ phenotypes as observed by AGIF are presented. There is a good correspondence of phenotypes between PAGIF and AGIF. However, analysis of hemolysates by AGIF appeared to result in more easily classifiable PGM₁ subtypes.

In Table 1 the distribution of PGM₁ phenotypes and alleles is given for a sample of 470 unrelated individuals from Southern Germany. In this Table the

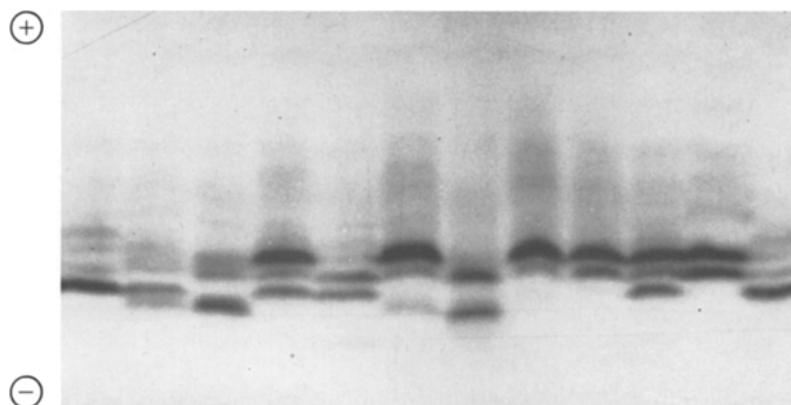


Fig. 2. PGM₁ subtypes after 90 min AGIF. From left to right: 1+1+, 1+1-, 1-1-, 1+2+, 1+2-, 1-2+, 1-2-, 2+2+, 2+2-, 1+2+, 2+2-, and 1+1+

Table 1. Distribution of phenotypes and alleles in the PGM₁ system in a sample from Southern Germany

Phenotype	Observed		Expected		Allele frequencies
	n	%	n	%	
PGM ₁ 1+1+	175	37.23	181.37	38.59	PGM ₁ ¹⁺ 0.6212
1+1-	76	16.17	71.47	15.21	PGM ₁ ¹⁻ 0.1224
1-1-	6	1.28	7.04	1.50	PGM ₁ ²⁺ 0.2043
1+2+	127	27.02	119.30	25.38	PGM ₁ ²⁻ 0.0521
1+2-	31	6.59	30.42	6.47	
1-2+	21	4.47	23.51	5.01	
1-2-	6	1.28	5.99	1.27	
2+2+	17	3.62	19.62	4.17	
2+2-	10	2.13	10.01	2.13	
2-2-	1	0.21	1.27	0.27	
Total	470	100.00	470.00	100.00	

$$\sum \chi^2 = 1.8474; df = 6; P > 0.20$$

Note: Phenotype PGM₁ 2-2- was found later

nomenclature proposed by Bark et al. (1976) is used. Our results are in close agreement with the distribution found by Kühnl and Spielmann (1978) in Hessen, Germany.

References

Bark JE, Harris MJ, Firth M (1976) Typing of the common phosphoglucomutase variants using isoelectric focusing—a new interpretation of the phosphoglucomutase system. J Forensic Sci Soc 16:115-120

Billardon C, Van Cong N, Picard JY, Dekaouel C, Rebourcelet R, Weil D, Feingold J, Frézal J (1973) Linkage studies of enzyme markers in man-mouse somatic cell hybrids. *Ann Hum Genet* 36:273-284

Bissbort S, Ritter H, Kömpf J (1978) PGM₁ subtyping by means of acid starch gel electrophoresis. *Hum Genet* 45:175-177

Douglas GR, McAlpine PJ, Hamerton JG (1973) Regional localisation of loci for human PGM(1) and 6PGD on human chromosome one by use of hybrids of Chinese hamster-human somatic cells. *Proc Nat Acad Sci* 70:2737-2740

Kühnl P, Schmidtmann U, Spielmann W (1977) Evidence for two additional common alleles at the PGM₁ locus (Phosphoglucomutase-E.C.: 2.7.5.1). *Hum Genet* 35:219-223

Kühnl P, Spielmann W (1978) Investigations on the PGM₁ polymorphism (phosphoglucomutase-EC 2.7.5.1) by isoelectric focusing. *Hum Genet* 43:57-67

Spencer N, Hopkinson DA, Harris H (1964) Phosphoglucomutase polymorphism in man. *Nature* 204:742-745

Sutton JG, Burgess R (1978) Genetic evidence for four common alleles at the phosphoglucomutase-1 locus (PGM₁), detectable by isoelectric focusing. *Vox Sang* 34:97-103

Welch SG, Swindlehurst CA, McGregor JA, Williams K (1978) Isoelectric focusing of human red cell phosphoglucomutase. *Hum Genet* 43:307-313

Received September 28, 1979